A comparison principle for nonlocal coupled systems of fully nonlinear parabolic equations

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Perron’s method for nonlocal fully nonlinear equations

This paper is concerned with existence of viscosity solutions of non-translation invariant nonlocal fully nonlinear equations. We construct a discontinuous viscosity solution of such nonlocal equation by Perron’s method. If the equation is uniformly elliptic, we prove the discontinuous viscosity solution is Hölder continuous and thus it is a viscosity solution.

متن کامل

Introduction to fully nonlinear parabolic equations

These notes contain a short exposition of selected results about parabolic equations: Schauder estimates for linear parabolic equations with Hölder coefficients, some existence, uniqueness and regularity results for viscosity solutions of fully nonlinear parabolic equations (including degenerate ones), the Harnack inequality for fully nonlinear uniformly parabolic equations. MSC. 35K55, 35D40, ...

متن کامل

A Counterexample to C Regularity for Parabolic Fully Nonlinear Equations

We address the self-similar solvability of a singular parabolic problem and show that solutions to parabolic fully nonlinear equations are not expected to be C.

متن کامل

Convergence of Rothe’s Method for Fully Nonlinear Parabolic Equations

Convergence of Rothe’s method for the fully nonlinear parabolic equation ut +F (D 2u,Du, u, x, t) = 0 is considered under some continuity assumptions on F. We show that the Rothe solutions are Lipschitz in time, and they solve the equation in the viscosity sense. As an immediate corollary we get Lipschitz behavior in time of the viscosity solutions of our equation.

متن کامل

The Evans-Krylov theorem for nonlocal fully nonlinear equations

We prove a regularity result for solutions of a purely integro-differential Bellman equation. This regularity is enough for the solutions to be understood in the classical sense. If we let the order of the equation approach two, we recover the theorem of Evans and Krylov about the regularity of solutions to concave uniformly elliptic partial differential equations.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied Mathematics Letters

سال: 2006

ISSN: 0893-9659

DOI: 10.1016/j.aml.2006.01.012